Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Immunol ; 24(1): 186-199, 2023 01.
Article in English | MEDLINE | ID: covidwho-20244916

ABSTRACT

Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , Pandemics , Adaptive Immunity , Palatine Tonsil , Antibodies, Viral
2.
Clin Infect Dis ; 2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2258289

ABSTRACT

BACKGROUND: Nirmatrelvir/ritonavir, the first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protease inhibitor, reduces the risk of hospitalization and death by coronavirus disease 2019 (COVID-19) but has been associated with symptomatic rebound after therapy completion. METHODS: Six individuals with relapse of COVID-19 symptoms after treatment with nirmatrelvir/ritonavir, 2 individuals with rebound symptoms without prior antiviral therapy and 7 patients with acute Omicron infection (controls) were studied. Soluble biomarkers and serum SARS-CoV-2 nucleocapsid protein were measured. Nasal swabs positive for SARS-CoV-2 underwent viral isolation and targeted viral sequencing. SARS-CoV-2 anti-spike, anti-receptor-binding domain, and anti-nucleocapsid antibodies were measured. Surrogate viral neutralization tests against wild-type and Omicron spike protein, as well as T-cell stimulation assays, were performed. RESULTS: High levels of SARS-CoV-2 anti-spike immunoglobulin G (IgG) antibodies were found in all participants. Anti-nucleocapsid IgG and Omicron-specific neutralizing antibodies increased in patients with rebound. Robust SARS-CoV-2-specific T-cell responses were observed, higher in rebound compared with early acute COVID-19 patients. Inflammatory markers mostly decreased during rebound. Two patients sampled longitudinally demonstrated an increase in activated cytokine-producing CD4+ T cells against viral proteins. No characteristic resistance mutations were identified. SARS-CoV-2 was isolated by culture from 1 of 8 rebound patients; Polybrene addition increased this to 5 of 8. CONCLUSIONS: Nirmatrelvir/ritonavir treatment does not impede adaptive immune responses to SARS-CoV-2. Clinical rebound corresponds to development of a robust antibody and T-cell immune response, arguing against a high risk of disease progression. The presence of infectious virus supports the need for isolation and assessment of longer treatment courses. Clinical trials registration. NCT04401436.

3.
Clin Transl Med ; 12(11): e1100, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2103516

ABSTRACT

BACKGROUND: Viral infection is a major cause of morbidity in children with mitochondrial disease (MtD). As a result, families with children with MtD are highly adherent to risk mitigation behaviours (RMBs) advised by the Centers for Disease Control and Prevention during the COVID-19 pandemic that can modulate infection risk. METHODS: Deep serologic phenotyping of viral infections was performed via home-based sampling by combining SARS-CoV-2 serologic testing and phage display immunoprecipitation and sequencing. Samples were collected approximately 1 year apart (October 2020 to April 2021 and October 2021 to March 2022) on households containing a child with MtD. RESULTS: In contrast to our first collection in 2020-2021, SARS-CoV-2 antibody profiles for all participants in 2021-2022 were marked by greater isotype diversity and the appearance of neutralizing antibodies. Besides SARS-CoV-2, households (N = 15) were exposed to >38 different respiratory and gastrointestinal viruses during the study, averaging five viral infections per child with MtD. Regarding clinical outcomes, children with MtD (N = 17) experienced 34 episodes of illness resulting in 6 hospitalizations, with some children experiencing multiple episodes. Neurologic events following illness were recorded in five patients. Infections were identified via clinical testing in only seven cases. Viral exposome profiles were consistent with clinical testing and even identified infections not captured by clinical testing. CONCLUSIONS: Despite reported adherence to RMBs during the COVID-19 pandemic by families with a child with MtD, viral infection was pervasive. Not all infections resulted in illness in the child with MtD, suggesting that some were subclinical or asymptomatic. However, selected children with MtD did experience neurologic events. Our studies emphasize that viral infections are inexorable, emphasizing the need for further understanding of host-pathogen interactions through broad serologic surveillance.


Subject(s)
COVID-19 , Exposome , Mitochondrial Diseases , Virus Diseases , United States , Child , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics
4.
Cell ; 185(23): 4333-4346.e14, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2041612

ABSTRACT

SARS-CoV-2 mRNA booster vaccines provide protection from severe disease, eliciting strong immunity that is further boosted by previous infection. However, it is unclear whether these immune responses are affected by the interval between infection and vaccination. Over a 2-month period, we evaluated antibody and B cell responses to a third-dose mRNA vaccine in 66 individuals with different infection histories. Uninfected and post-boost but not previously infected individuals mounted robust ancestral and variant spike-binding and neutralizing antibodies and memory B cells. Spike-specific B cell responses from recent infection (<180 days) were elevated at pre-boost but comparatively less so at 60 days post-boost compared with uninfected individuals, and these differences were linked to baseline frequencies of CD27lo B cells. Day 60 to baseline ratio of BCR signaling measured by phosphorylation of Syk was inversely correlated to days between infection and vaccination. Thus, B cell responses to booster vaccines are impeded by recent infection.


Subject(s)
B-Lymphocytes , COVID-19 , Viral Vaccines , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination , B-Lymphocytes/immunology
5.
Laryngoscope ; 2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2027387

ABSTRACT

OBJECTIVE: To determine the prevalence of COVID-19 in a cohort of children undergoing tonsillectomy through assessment of B cell immune responses to SARS-CoV-2 in both peripheral blood and tonsil tissue. METHODS: In this cohort study at a tertiary pediatric hospital (Children's National Hospital) in Washington, DC, we recruited 100 children undergoing tonsillectomy from late September 2020 to January 2021. Serum, peripheral blood cells, and tonsil tissue were collected and examined for immune reactivity to SARS-CoV-2. Parent-reported clinical histories were compared to antibody and B-cell responses. RESULTS: Among 100 children undergoing tonsillectomy, 19% had evidence of immune responses to SARS-CoV-2 (CoV2+), indicating prior COVID-19. In all seropositive participants, we detected SARS-CoV-2 specific B cells in both peripheral blood mononuclear cells and tonsils, providing evidence for tissue-specific immunity in these children. Of the 19, 63% reported no known history of COVID-19, and an additional 3 were asymptomatic or unaware of an acute infection when detected on pre-surgery screen. Hispanic children represented 74% of CoV2+ subjects compared to 37% of the full cohort. 100% of CoV2+ children lived in a zip code with poverty level >10%. CONCLUSIONS: Nearly one-fifth of children undergoing tonsillectomy at an urban U.S. hospital had evidence of prior COVID-19 during the early pandemic, with the majority unaware of prior infection. Our results underscore the ethnic and socio-economic disparities of COVID-19. We found concordant evidence of humoral immune responses in children in both blood and tonsil tissue, providing evidence of local immune responses in the upper respiratory tract. LEVEL OF EVIDENCE: 3 Laryngoscope, 2022.

6.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750508

ABSTRACT

Emergence of a new variant of spike protein (D614G) with increased infectivity and transmissibility has prompted many to analyze the potential role of this variant in the SARS-CoV-2 pandemic. When a new variant emerges, there is a concern regarding whether an individual exposed to one variant of a virus will have cross-reactive immune memory to the second variant. Accordingly, we analyzed the serologic reactivity of D614 (original) and G614 variant spike proteins. We found that antibodies from a high-incidence population in New York City reacted both toward the original D614 spike and the G614 spike variant. These data suggest that patients who have been exposed to either SARS-CoV-2 variant have humoral immunity that can respond against both variants. This is an important finding both for SARS-CoV-2 disease biology and for potential antibody-based therapeutics.

7.
Sci Transl Med ; 13(620): eabj7790, 2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1467665

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by respiratory distress, multiorgan dysfunction, and, in some cases, death. The pathological mechanisms underlying COVID-19 respiratory distress and the interplay with aggravating risk factors have not been fully defined. Lung autopsy samples from 18 patients with fatal COVID-19, with symptom onset-to-death times ranging from 3 to 47 days, and antemortem plasma samples from 6 of these cases were evaluated using deep sequencing of SARS-CoV-2 RNA, multiplex plasma protein measurements, and pulmonary gene expression and imaging analyses. Prominent histopathological features in this case series included progressive diffuse alveolar damage with excessive thrombosis and late-onset pulmonary tissue and vascular remodeling. Acute damage at the alveolar-capillary barrier was characterized by the loss of surfactant protein expression with injury to alveolar epithelial cells, endothelial cells, respiratory epithelial basal cells, and defective tissue repair processes. Other key findings included impaired clot fibrinolysis with increased concentrations of plasma and lung plasminogen activator inhibitor-1 and modulation of cellular senescence markers, including p21 and sirtuin-1, in both lung epithelial and endothelial cells. Together, these findings further define the molecular pathological features underlying the pulmonary response to SARS-CoV-2 infection and provide important insights into signaling pathways that may be amenable to therapeutic intervention.


Subject(s)
COVID-19 , Cellular Senescence , Fibrinolysis , Humans , Lung , SARS-CoV-2
8.
Sci Transl Med ; 13(601)2021 07 07.
Article in English | MEDLINE | ID: covidwho-1338832

ABSTRACT

Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates in the United States and elsewhere. To address this, we analyzed seropositivity in 9089 adults in the United States who had not been diagnosed previously with COVID-19. Individuals with characteristics that reflected the U.S. population (n = 27,716) were selected by quota sampling from 462,949 volunteers. Enrolled participants (n = 11,382) provided medical, geographic, demographic, and socioeconomic information and dried blood samples. Survey questions coincident with the Behavioral Risk Factor Surveillance System survey, a large probability-based national survey, were used to adjust for selection bias. Most blood samples (88.7%) were collected between 10 May and 31 July 2020 and were processed using ELISA to measure seropositivity (IgG and IgM antibodies against SARS-CoV-2 spike protein and the spike protein receptor binding domain). The overall weighted undiagnosed seropositivity estimate was 4.6% (95% CI, 2.6 to 6.5%), with race, age, sex, ethnicity, and urban/rural subgroup estimates ranging from 1.1% to 14.2%. The highest seropositivity estimates were in African American participants; younger, female, and Hispanic participants; and residents of urban centers. These data indicate that there were 4.8 undiagnosed SARS-CoV-2 infections for every diagnosed case of COVID-19, and an estimated 16.8 million infections were undiagnosed by mid-July 2020 in the United States.


Subject(s)
COVID-19 , Pandemics , Adult , Antibodies, Viral , Female , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , United States/epidemiology
9.
J Clin Immunol ; 41(5): 906-913, 2021 07.
Article in English | MEDLINE | ID: covidwho-1135177

ABSTRACT

In order to properly understand the spread of SARS-CoV-2 infection and development of humoral immunity, researchers have evaluated the presence of serum antibodies of people worldwide experiencing the pandemic. These studies rely on the use of recombinant proteins from the viral genome in order to identify serum antibodies that recognize SARS-CoV-2 epitopes. Here, we discuss the cross-reactivity potential of SARS-CoV-2 antibodies with the full spike proteins of four other betacoronaviruses that cause disease in humans, MERS-CoV, SARS-CoV, HCoV-OC43, and HCoV-HKU1. Using enzyme-linked immunosorbent assays (ELISAs), we detected the potential cross-reactivity of antibodies against SARS-CoV-2 towards the four other coronaviruses, with the strongest cross-recognition between SARS-CoV-2 and SARS /MERS-CoV antibodies, as expected based on sequence homology of their respective spike proteins. Further analysis of cross-reactivity could provide informative data that could lead to intelligently designed pan-coronavirus therapeutics or vaccines.


Subject(s)
Betacoronavirus/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Viral/blood , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Humans , Middle Aged , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/immunology , Young Adult
10.
J Infect Dis ; 223(5): 802-804, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-1117035

ABSTRACT

Emergence of a new spike protein variant (D614G) with increased infectivity has prompted many to analyze its role in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. There is concern regarding whether an individual exposed to one variant of a virus will have cross-reactive memory to the second variant. Accordingly, we analyzed the serologic reactivity of both variants, and we found that antibodies from 88 donors from a high-incidence population reacted toward both the original spike and the D614 spike variant. These data suggest that patients who are exposed to either variant have cross-responsive humoral immunity. This represents an important finding both for SARS-CoV-2 disease biology and for therapeutics.


Subject(s)
COVID-19/diagnosis , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Cross Reactions , Enzyme-Linked Immunosorbent Assay/methods , Humans , Mutation , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
11.
Nat Commun ; 12(1): 113, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1007629

ABSTRACT

The extent of SARS-CoV-2 infection throughout the United States population is currently unknown. High quality serology is key to avoiding medically costly diagnostic errors, as well as to assuring properly informed public health decisions. Here, we present an optimized ELISA-based serology protocol, from antigen production to data analyses, that helps define thresholds for IgG and IgM seropositivity with high specificities. Validation of this protocol is performed using traditionally collected serum as well as dried blood on mail-in blood sampling kits. Archival (pre-2019) samples are used as negative controls, and convalescent, PCR-diagnosed COVID-19 patient samples serve as positive controls. Using this protocol, minimal cross-reactivity is observed for the spike proteins of MERS, SARS1, OC43 and HKU1 viruses, and no cross reactivity is observed with anti-influenza A H1N1 HAI. Our protocol may thus help provide standardized, population-based data on the extent of SARS-CoV-2 seropositivity, immunity and infection.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , SARS-CoV-2/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Pandemics , Reference Standards , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
12.
medRxiv ; 2020 Jul 10.
Article in English | MEDLINE | ID: covidwho-664249

ABSTRACT

Emergence of a new variant of spike protein (D614G) with increased infectivity and transmissibility has prompted many to analyze the potential role of this variant in the SARS-CoV-2 pandemic. When a new variant emerges, there is a concern regarding whether an individual exposed to one variant of a virus will have cross-reactive immune memory to the second variant. Accordingly, we analyzed the serologic reactivity of D614 (original) and G614 variant spike proteins. We found that antibodies from a high-incidence population in New York City reacted both toward the original D614 spike and the G614 spike variant. These data suggest that patients who have been exposed to either SARS-CoV-2 variant have humoral immunity that can respond against both variants. This is an important finding both for SARS-CoV-2 disease biology and for potential antibody-based therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL